Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.633
Filtrar
1.
Asian Pac J Cancer Prev ; 25(2): 661-670, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415554

RESUMO

BACKGROUND: Growing studies revealed the association between polymorphisms in Tumor Protein TP73 (TP73) and susceptibility to cancer, especially with gynecological cancers. but, the results remained inconsistent. This meta-analysis was carried out to examine the relationship of the TP73 G4C14-to-A4T14 polymorphism (hereafter, G4C14-to-A4T14) with susceptibility to cervical cancer globally and by ethnicity. METHODS: Eligible studies were collected by retrieving PubMed, Scopus, Web of Science, Embase, Wan Fang, and CNKI published before 25 October, 2023. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of such association. RESULTS: A total of 10 case-control studies with 1804 cervical cancer cases and 2433 healthy controls were included to this study. The pooled results showed that TP73 G4C14-to-A4T14 polymorphism was not associated with cervical cancer risk in overall. in terms of stratified analyses by ethnicity, this polymorphism was not associated with risk of cervical cancer among East-Asian women. however,  there was a significant association based source of control among hospital-based studies. CONCLUSIONS: Inconsistent with previous meta-analyses, our pooled results revealed that TP73 G4C14-to-A4T14 polymorphism might not be a risk factor for development of cervical cancer globally and among East-Asian women. Moreover, further studies examining the effect of gene-gene and gene-environment interactions may eventually provide a better knowledge.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/genética , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Predisposição Genética para Doença , Fatores de Risco , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único
2.
Cell Death Dis ; 14(10): 674, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828008

RESUMO

The two p53 homologues p63 and p73 regulate transcriptional programs in epithelial tissues and several cell types in these tissues express both proteins. All members of the p53 family form tetramers in their active state through a dedicated oligomerization domain that structurally assembles as a dimer of dimers. The oligomerization domain of p63 and p73 share a high sequence identity, but the p53 oligomerization domain is more divergent and it lacks a functionally important C-terminal helix present in the other two family members. Based on these structural differences, p53 does not hetero-oligomerize with p63 or p73. In contrast, p63 and p73 form hetero-oligomers of all possible stoichiometries, with the hetero-tetramer built from a p63 dimer and a p73 dimer being thermodynamically more stable than the two homo-tetramers. This predicts that in cells expressing both proteins a p632/p732 hetero-tetramer is formed. So far, the tools to investigate the biological function of this hetero-tetramer have been missing. Here we report the generation and characterization of Designed Ankyrin Repeat Proteins (DARPins) that bind with high affinity and selectivity to the p632/p732 hetero-tetramer. Using these DARPins we were able to confirm experimentally the existence of this hetero-tetramer in epithelial mouse and human tissues and show that its level increases in squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Fatores de Transcrição , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Repetição de Anquirina Projetadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
PLoS One ; 18(10): e0292434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796859

RESUMO

Cystic echinococcosis (CE) is a life-threatening helminthic disease caused by the Echinococcus granulosus sensulato complex. Previous evidence indicates that the host's innate immune responses against CE can combat and regulate the growth rate and mortality of hydatid cyst in the host's internal organs. However, the survival mechanisms of CE are not yet fully elucidated in the human body. In the present study, the apoptotic effects of fertile and infertile hydatid fluid (HF) were tested on murine peritoneal cells in vivo mice model. Mice were divided into five groups including; control group, fertile HF-treated peritoneal cells, infertile HF-treated peritoneal cells, protoscolices (PSCs)-treated peritoneal cells and HF+PSCs-treated peritoneal cells group. Mice groups were intraperitoneally inoculated with PBS, HF, and/or PSCs. Afterwards, peritoneal cells were isolated and mRNA expression of STAT3, caspase-3, p73 and Smac genes were evaluated by quantitative Real-time PCR. After 48 hours of exposure, the protein levels of Smac and STAT3 was determined by western blotting technique. After 6 hours of exposure, Caspase-3 activity was also measured by fluorometric assay. The intracellular reactive oxygen species (ROS) production was examined in all groups. The mRNA expression levels of p73, caspase-3 and also Caspase-3 activity in HF+PSCs-treated peritoneal cells were higher than in the test and control groups (Pv<0.05), while the mRNA expression level of anti-apoptotic STAT3 and Smac genes in HF+PSC-treated peritoneal cells were lower than in the other groups (Pv<0.05). As well, the level of intracellular ROS in the fertile HCF-treated peritoneal cells, infertile HCF-treated peritoneal cells, PSC-treated peritoneal cells and HF+PSC-treated peritoneal cells groups were significantly higher than in the control group (Pv<0.05).Current findings indicates that oxidative stress and p73 can trigger the apoptosis of murine peritoneal cells through modulator of HF-treated PSCs that is likely one of the hydatid cyst survival mechanisms in vivo mice model.


Assuntos
Apoptose , Equinococose , Echinococcus granulosus , Proteína Tumoral p73 , Animais , Camundongos , Caspase 3/metabolismo , Espécies Reativas de Oxigênio , RNA Mensageiro , Proteína Tumoral p73/metabolismo
5.
Elife ; 122023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650871

RESUMO

TP73, a member of the p53 family, is expressed as TAp73 and ΔNp73 along with multiple C-terminal isoforms (α-η). ΔNp73 is primarily expressed in neuronal cells and necessary for neuronal development. Interestingly, while TAp73α is a tumor suppressor and predominantly expressed in normal cells, TAp73 is found to be frequently altered in human cancers, suggesting a role of TAp73 C-terminal isoforms in tumorigenesis. To test this, the TCGA SpliceSeq database was searched and showed that exon 11 (E11) exclusion occurs frequently in several human cancers. We also found that p73α to p73γ isoform switch resulting from E11 skipping occurs frequently in human prostate cancers and dog lymphomas. To determine whether p73α to p73γ isoform switch plays a role in tumorigenesis, CRISPR technology was used to generate multiple cancer cell lines and a mouse model in that Trp73 E11 is deleted. Surprisingly, we found that in E11-deificient cells, p73γ becomes the predominant isoform and exerts oncogenic activities by promoting cell proliferation and migration. In line with this, E11-deficient mice were more prone to obesity and B-cell lymphomas, indicating a unique role of p73γ in lipid metabolism and tumorigenesis. Additionally, we found that E11-deficient mice phenocopies Trp73-deficient mice with short lifespan, infertility, and chronic inflammation. Mechanistically, we showed that Leptin, a pleiotropic adipocytokine involved in energy metabolism and oncogenesis, was highly induced by p73γ,necessary for p73γ-mediated oncogenic activity, and associated with p73α to γ isoform switch in human prostate cancer and dog lymphoma. Finally, we showed that E11-knockout promoted, whereas knockdown of p73γ or Leptin suppressed, xenograft growth in mice. Our study indicates that the p73γ-Leptin pathway promotes tumorigenesis and alters lipid metabolism, which may be targeted for cancer management.


Assuntos
Transformação Celular Neoplásica , Leptina , Proteína Tumoral p73 , Animais , Cães , Humanos , Camundongos , Carcinogênese/genética , Éxons , Leptina/genética , Obesidade , Neoplasias da Próstata , Proteína Tumoral p73/genética , Linfoma
6.
Cancer Discov ; 13(5): 1210-1229, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734633

RESUMO

Triple-negative breast cancers (TNBC) frequently inactivate p53, increasing their aggressiveness and therapy resistance. We identified an unexpected protein vulnerability in p53-inactivated TNBC and designed a new PROteolysis TArgeting Chimera (PROTAC) to target it. Our PROTAC selectively targets MDM2 for proteasome-mediated degradation with high-affinity binding and VHL recruitment. MDM2 loss in p53 mutant/deleted TNBC cells in two-dimensional/three-dimensional culture and TNBC patient explants, including relapsed tumors, causes apoptosis while sparing normal cells. Our MDM2-PROTAC is stable in vivo, and treatment of TNBC xenograft-bearing mice demonstrates tumor on-target efficacy with no toxicity to normal cells, significantly extending survival. Transcriptomic analyses revealed upregulation of p53 family target genes. Investigations showed activation and a required role for TAp73 to mediate MDM2-PROTAC-induced apoptosis. Our data, challenging the current MDM2/p53 paradigm, show MDM2 is required for p53-inactivated TNBC cell survival, and PROTAC-targeted MDM2 degradation is an innovative potential therapeutic strategy for TNBC and superior to existing MDM2 inhibitors. SIGNIFICANCE: p53-inactivated TNBC is an aggressive, therapy-resistant, and lethal breast cancer subtype. We designed a new compound targeting an unexpected vulnerability we identified in TNBC. Our MDM2-targeted degrader kills p53-inactivated TNBC cells, highlighting the requirement for MDM2 in TNBC cell survival and as a new therapeutic target for this disease. See related commentary by Peuget and Selivanova, p. 1043. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Quimera de Direcionamento de Proteólise , Proteínas Proto-Oncogênicas c-mdm2 , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/fisiopatologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia , Quimera de Direcionamento de Proteólise/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Análise de Sobrevida , Apoptose/efeitos dos fármacos , Proteína Tumoral p73/metabolismo , Xenoenxertos , Proteólise/efeitos dos fármacos , Feminino
7.
Cell Death Dis ; 14(1): 14, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631448

RESUMO

TP73 is expressed as multiple N- and C-terminal isoforms through two separate promoters or alternative splicing. While N-terminal p73 isoforms have been well studied, very little is known about p73 C-terminal isoforms. Thus, CRISPR was used to delete TP73 Exon13 (E13-KO) to induce p73α to p73ß isoform switch. We showed that E13-KO led to decreased cell proliferation and migration and sensitized cells to ferroptosis, which can be reverted by knockdown of TAp73ß in E13-KO cells. To understand the biological function of p73ß in vivo, we generated a mouse model in that the Trp73 E13 was deleted by CRISPR. We showed that p73α to p73ß isoform switch led to increased cellular senescence in mouse embryonic fibroblasts. We also showed that E13-deficient mice exhibited shorter life span and were prone to spontaneous tumors, chronic inflammation and liver steatosis as compared to WT mice. Additionally, we found that the incidence of chronic inflammation and liver steatosis was higher in E13-deficient mice than that in Trp73-deficient mice, suggesting that p73ß is a strong inducer of inflammatory response. Mechanistically, we showed that TAp73ß was able to induce cysteine dioxygenase 1 (CDO-1), leading to cysteine depletion and subsequently, enhanced ferroptosis and growth suppression. Conversely, knockdown of CDO-1 was able to alleviate the growth suppression and ferroptosis in E13-KO cells. Together, our data suggest that at a physiologically relevant level, TAp73ß is a strong inducer of growth suppression but insufficient to compensate for loss of TAp73α in tumor suppression due to aberrant induction of inflammatory response and liver steatosis.


Assuntos
Fígado Gorduroso , Inflamação , Proteína Tumoral p73 , Animais , Camundongos , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fibroblastos , Genes Supressores de Tumor , Inflamação/genética , Inflamação/metabolismo , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética
8.
J Int Med Res ; 50(10): 3000605221133173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36314251

RESUMO

OBJECTIVE: The TP73 G4C14-A4T14 variant has been associated with elevated cancer risk, but the evidence is inconclusive. We performed a meta-analysis to clarify the role of this variant in cancer development. METHODS: Eligible literature was selected by searching PubMed, Google Scholar, Cochrane Library, and Embase. The meta-analysis was performed using Review Manager 5.4. RESULTS: A meta-analysis of 55 case-control studies showed that the G4C14-A4T14 variant was significantly associated with overall cancer development in five genetic models, including the allele model (AM), codominant model 1 (COD1), COD2, dominant model (DM), and over-dominant model (OD). Sub-group analysis based on ethnicity showed significantly higher risks in Africans in COD2 and RM and in Whites in AM, COD2, DM, and recessive model (RM). Cancer-specific subgroup analysis identified significant risks of gynecological (ovarian, cervical, and endometrial cancer), colorectal, oral, head and neck, and other cancers. Moreover, hospital-based controls revealed significant cancer risks in the AM, COD1, COD2, DM, and RM genetic models. Our findings were confirmed by trial sequential analysis. CONCLUSION: This meta-analysis confirmed that TP73 G4C14-A4T14 significantly elevates the overall cancer risk, especially in White, African, and hospital-based populations, and specifically predisposes individuals to gynecological, colorectal, oral, and head and neck cancers.This meta-analysis was registered at INPLASY (registration number: INPLASY202210070).


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Cancer Metastasis Rev ; 41(4): 853-869, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948758

RESUMO

Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Genes Supressores de Tumor , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
10.
Hum Cell ; 35(5): 1512-1520, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35896939

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. The aim of the present study was to explore the expression level of tumor protein 73 (TP73) in highly malignant CRC tumors and how the long non-coding RNA tumor protein 73 antisense RNA 1 (TP73-AS1) influences that transcription. We found that TP73-AS1 was highly expressed in malignant CRC samples in The Cancer Genome Atlas (TCGA) database. We also demonstrated TP73-AS1 was expressed in thirty samples of CRC tissues collected from China Medical University patients as well as in HCT116, RKO and SW480 CRC cell lines but not in HCoEpiC or CCD-18Co normal colon cells. Only wild-type TP73-AS1, but not any of its alternate splicing isoforms, was positively correlated with tumor malignancy. TP73-AS1 transcripts were shown to be located in cell nuclei especially in close proximity to the TP73 promoter in CRC cells, but not in normal colon cells. In addition, an interaction between lysine demethylase 5A (KDM5A) and TP73-AS1 in CRC cells, but not normal colon cells, and KDM5A localization on the TP73 promoter were influenced by TP73-AS1. Interestingly, the H3K4me3 level on the TP73 promoter was reduced, but was elevated by TP73-AS1 knockdown in CRC cells. In conclusion, these results suggest a novel epigenetic role of TP73-AS1 on histone demethylation that influences TP73 transcription, and shed light on malignancy in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante/metabolismo , Proteína Tumoral p73/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Lisina/metabolismo , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo
11.
Cell Death Differ ; 29(12): 2445-2458, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35717504

RESUMO

The function of the p53 transcription factor family is dependent on several folded domains. In addition to a DNA-binding domain, members of this family contain an oligomerization domain. p63 and p73 also contain a C-terminal Sterile α-motif domain. Inhibition of most transcription factors is difficult as most of them lack deep pockets that can be targeted by small organic molecules. Genetic knock-out procedures are powerful in identifying the overall function of a protein, but they do not easily allow one to investigate roles of individual domains. Here we describe the characterization of Designed Ankyrin Repeat Proteins (DARPins) that were selected as tight binders against all folded domains of p63. We determine binding affinities as well as specificities within the p53 protein family and show that DARPins can be used as intracellular inhibitors for the modulation of transcriptional activity. By selectively inhibiting DNA binding of the ΔNp63α isoform that competes with p53 for the same promoter sites, we show that p53 can be reactivated. We further show that inhibiting the DNA binding activity stabilizes p63, thus providing evidence for a transcriptionally regulated negative feedback loop. Furthermore, the ability of DARPins to bind to the DNA-binding domain and the Sterile α-motif domain within the dimeric-only and DNA-binding incompetent conformation of TAp63α suggests a high structural plasticity within this special conformation. In addition, the developed DARPins can also be used to specifically detect p63 in cell culture and in primary tissue and thus constitute a very versatile research tool for studying the function of p63.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Tumoral p73/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , DNA/química
12.
Neurobiol Aging ; 115: 109-111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512496

RESUMO

A recent study suggested an association between rare, non-synonymous variants in the gene encoding tumor protein p73 (TP73) and amyotrophic lateral sclerosis (ALS) - a progressive, fatal neurodegenerative disease. The original association was based on a case-control analysis with relatively small sample size. While functional data were presented to substantiate these claims, it remains unclear whether the results demonstrate clinical significance; additionally, the modelled null alleles had been recently reported to cause a severe pediatric disorder characterized by impaired mucociliary clearance and lissencephaly. Here, we aimed to replicate the proposed genetic association between TP73 and ALS using the two largest publicly available ALS sequencing datasets as hosted by the ALS Knowledge Portal (n = 3864 cases and n = 7839 controls) and the Project MinE ALS browser (n = 4366 cases and n = 1832 controls) for a total of 8230 ALS cases and 9671 controls. We did not observe an enrichment of rare, protein-coding variants in the ALS cases and surprisingly identified a relatively large number of controls carrying rare, non-synonymous variants in TP73 (n = 65). Based on these results we conclude that TP73 most likely does not predispose to ALS.


Assuntos
Esclerose Amiotrófica Lateral , Proteína Tumoral p73 , Esclerose Amiotrófica Lateral/epidemiologia , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Proteína Tumoral p73/genética
13.
Proc Natl Acad Sci U S A ; 119(22): e2123202119, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617425

RESUMO

p73, a p53 family member, undergoes alternative splicing at the 3' end to produce multiple isoforms, but their expression and activity are largely unknown. Thus, CRISPR was used to knock out exon 12 (E12) in human cancer cell lines and mice, leading to isoform switch from p73α to isoform p73α1. We found that p73α1 is naturally expressed and induced by DNA damage. We also found that knockout of E12 suppresses cell growth and migration in H1299 and MIA PaCa-2 cells and promotes cellular senescence in mouse embryonic fibroblasts. Similarly, ectopic expression of p73α1 suppresses cell proliferation, whereas knockdown of p73α1 restores the cell proliferative and migratory capacities of E12−/− cells. Consistently, we found that E12+/− mice are not prone to spontaneous tumors. Instead, E12+/− mice are prone to systemic inflammation and exhibit elevated TNFα expression in inflamed tissues. Moreover, we found that Notch1, a master regulator of the inflammatory response, is regulated by p73α1 and highly expressed in E12−/− cells and inflamed E12+/− mouse tissues. Furthermore, through knockdown of p73α1 and/or Notch1 in E12−/− cells, we found that Notch1 is necessary for p73α1-mediated growth suppression. Together, these data suggest that p73α1 plays a critical role in tumor suppression and the inflammatory response via Notch1.


Assuntos
Genes Supressores de Tumor , Inflamação , Neoplasias , Receptor Notch1 , Proteína Tumoral p73 , Animais , Linhagem Celular Tumoral , Dano ao DNA , Éxons/genética , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
14.
Mol Carcinog ; 61(7): 629-642, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35560453

RESUMO

Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.


Assuntos
Fatores de Transcrição , Proteína Supressora de Tumor p53 , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
BMC Cancer ; 22(1): 581, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614413

RESUMO

BACKGROUND: Long non-coding RNA P73 antisense RNA 1 T (non-protein coding), also known as Lnc RNA TP73-AS1, is dysregulated in various tumors but the correlation between its expression and clinicopathological parameters and/or prognoses in cancer patients is inconclusive. Here, we performed a meta-analysis to evaluate the prognostic value of Lnc RNA TP73-AS1 for malignancies. METHODS: We systematically searched four online databases including PubMed, the Web of Science, Embase, and the Cochrane Library for eligible articles published up to June 29/2020. Odds ratios (ORs) and Pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to assess the association of TP73-AS1 expression with prognostic and clinicopathological parameters. We further validated TP73-AS1 expression in various malignancies and its potential prognostic value using the GEPIA online database. We predicted potential biological processes and relevant signal mechanisms through the public databases. RESULTS: A total of 26 studies examining 14 cancers were analyzed to evaluate the relationship between TP73-AS1 expression, clinicopathological features and prognostic indicators. The results indicated that TP73-AS1 expression markedly correlates with TNM stage (OR = 3.27,95% CI:2.43-4.39, P < 0.00001), tumor size (OR = 3.00, 95%CI:2.08-4.35, P < 0.00001), lymph node metastasis (OR = 2.77, 95%CI:1.42-5.38,P < 0.00001) and distant metastasis (OR = 4.50,95%CI:2. 62-7.73,P < 0.00001). No correlation with age (OR = 1.12,95%CI:0.77-1.64, P > 0.05), gender (OR = 1.08, 95%CI:0.84-1.38, P > 0.05) or differentiation (OR = 1.39, 95%CI:0.71-2.70, P = 0.340) was observed. TP73-AS1 overexpression was a biomarker of poor Overall survival(OS)(HR = 1.85,95%CI:1.53-2.22, P < 0.00001) and Disease-Free-Survival (DFS) (HR = 1.57,95%CI:1.03-2.42, P < 0.05). Dysregulated TP73-AS1 expression and its prognostic value in various cancers was validated based on The Cancer Genome Atlas (TCGA). Further biological function predictions indicated that TP73-AS1 was involved in pro-oncogenic signaling. CONCLUSIONS: The upregulation of Lnc RNA TP73-AS1 was related to detrimental clinicopathological parameters and can be considered an indicator of poor prognosis for cancer malignancies.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Humanos , Metástase Linfática , Neoplasias/patologia , Prognóstico , RNA Longo não Codificante/metabolismo , Proteína Tumoral p73/genética
16.
Biomolecules ; 12(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327630

RESUMO

The p53 family has the following three members: p53, p63 and p73. p53 is a tumor suppressor gene that frequently exhibits mutation in head and neck cancer. Most p53 mutants are loss-of-function (LoF) mutants, but some acquire some oncogenic function, such as gain of function (GoF). It is known that the aggregation of mutant p53 can induce p53 GoF. The p73 activators RETRA and NSC59984 have an anti-cancer effect in p53 mutation cells, but we found that p73 activators were not effective in all head and neck squamous cell carcinoma (HNSCC) cell lines, with different p53 mutants. A comparison of the gene expression profiles of several regulator(s) in mutant HNSCC cells with or without aggregation of p53 revealed that nicotinamide phosphoribosyltransferase (NAMPT) is a key regulator of mutant p53 aggregation. An NAMPT inhibitor, to reduce abnormal aggregation of mutant p53, used in combination with a p73 activator, was able to effectively repress growth in HNSCC cells with p53 GoF mutants. This study, therefore, suggests a potential combination therapy approach for HNSCC with a p53 GoF mutation.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteína Supressora de Tumor p53 , Proliferação de Células , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Cell Death Differ ; 29(5): 921-937, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314772

RESUMO

The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. FACTS: Distinct physiological roles/functions are performed by specific isoforms. The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation. Mdm2 binds to all three family members but ubiquitinates only p53. TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric. The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains. OPEN QUESTIONS: Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells? What is the physiological function of the p63/p73 SAM domains? Do the short isoforms of p63 and p73 have physiological functions? What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?


Assuntos
Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Animais , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Mol Biol Rep ; 49(7): 6859-6869, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35138524

RESUMO

BACKGROUND: Prostate cancer is a malignant disease that severely affects the health and comfort of the male population. The long non-coding RNA TP73-AS1 has been shown to be involved in the malignant transformation of various human cancers. However, whether TP73-AS1 contributes to prostate cancer progression has not been reported yet. Accordingly, here we aimed to report the role of TP73-AS1 in the development and progression of prostate cancer and determine its relationship with TP73. METHODS AND RESULTS: TP73-AS1-specific siRNA oligo duplexes were used to silence TP73-AS1 in DU-145 and PC-3 cells. Results indicated that TP73-AS1 was upregulated whereas TP73 was downregulated in prostate cancer cells compared to normal prostate cells and there was a negative correlation between them. Besides, loss of function experiments of TP73-AS1 in prostate cancer cells strongly induced cellular apoptosis, interfered with the cell cycle progression, and modulated related pro- and anti-apoptotic gene expression. Colony formation and migration capacities of TP73-AS1-silenced prostate cancer cells were also found to be dramatically reduced. CONCLUSIONS: Our findings provide novel evidence that suggests a chief regulatory role for the TP73-TP73-AS1 axis in prostate cancer development and progression, suggesting that the TP73/TP73-AS1 axis can be a promising diagnostic and therapeutic target for prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Proteína Tumoral p73/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética
19.
Toxicology ; 470: 153138, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35219798

RESUMO

Bisphenol A (2,2-bis(4'-hydroxyphenyl) propane, BPA) is a well-known endocrine-disrupting compound that is widely used in various daily products and exhibits embryonic development toxicity and genotoxicity. However, the affected signaling pathways involved in embryonic development especially the interactions of involved proteins remain unclear. In our previous study (Ge et al., 2021), BPA induces DNA damage and apoptosis in Xenopus embryos, resulting in multiple malformations of larvae. However, the signaling pathways induced for apoptosis response to DNA damage are still not well elucidated. Here, we systematically elucidated the enriched pathways affected by BPA and illustrated the interactions of involved proteins. Results indicated that BPA affected multiple embryonic development pathways including Hippo, TGF-ß, Wnt, and Notch pathways. Furthermore, the protein-protein interaction network suggested that the c-Abl/YAPY357/p73 pathway may play a key role in apoptosis induction in response to DNA damage. P19 embryonal carcinoma stem cells, as a developmental toxicity model, were treated with different BPA concentrations to establish an in vitro model to verify the role of the c-Abl/YAPY357/p73 pathway in apoptosis. BPA triggered DNA damage and significantly upregulated the expression levels of c-Abl, phosphorylated YAPY357, phosphorylated p73Y99, and cleaved caspase-3 protein (p < 0.05), thus decreasing cell viability and transcriptionally activating the p73 target genes Bax and Puma. These data suggested that BPA activated the c-Abl/YAPY357/p73 pathway in response to DNA damage. Imatinib, an inhibitor of tyrosine kinase c-Abl, significantly downregulated the elevated expression levels of p-YAPY357, p-p73Y99 and cleaved caspase-3 (p < 0.05) caused by BPA and then ameliorated the cell index of P19 cells in the BPA-treated group. Therefore, this substance restrained the phosphokinase activity of c-Abl and suppressed the c-Abl/YAPY357/p73 pathway. Results showed that the c-Abl/YAPY357/p73 pathway served as a mechanism for caspase-3 activation that induced the apoptosis response to DNA damage stress.


Assuntos
Proteínas de Ligação a DNA , Proteínas Nucleares , Apoptose/genética , Compostos Benzidrílicos , Caspase 3/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Proteínas Nucleares/genética , Fenóis , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Cancer Res ; 82(7): 1340-1352, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149588

RESUMO

Targeting cyclin-dependent kinases 4 and 6 (CDK4/6) is a successful therapeutic approach against breast and other solid tumors. Inhibition of CDK4/6 halts cell cycle progression and promotes antitumor immunity. However, the mechanisms underlying the antitumor activity of CDK4/6 inhibitors are not fully understood. We found that CDK4/6 bind and phosphorylate the p53 family member p73 at threonine 86, which sequesters p73 in the cytoplasm. Inhibition of CDK4/6 led to dephosphorylation and nuclear translocation of p73, which transcriptionally activated death receptor 5 (DR5), a cytokine receptor and key component of the extrinsic apoptotic pathway. p73-mediated induction of DR5 by CDK4/6 inhibitors promoted immunogenic cell death of cancer cells. Deletion of DR5 in cancer cells in vitro and in vivo abrogated the potentiating effects of CDK4/6 inhibitors on immune cytokine TRAIL, 5-fluorouracil chemotherapy, and anti-PD-1 immunotherapy. Together, these results reveal a previously unrecognized consequence of CDK4/6 inhibition, which may be critical for potentiating the killing and immunogenic effects on cancer cells. SIGNIFICANCE: This work demonstrates how inhibition of CDK4/6 sensitizes cancer cells to chemotherapy and immune checkpoint blockade and may provide a new molecular marker for improving CDK4/6-targeted cancer therapies. See related commentary by Frank, p. 1170.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Inibidores de Checkpoint Imunológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Proteína Tumoral p73 , Apoptose , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fluoruracila/farmacologia , Humanos , Fosforilação , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteína Tumoral p73/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...